
New way for simulation of transient 
natural convection heat transfer 
Yoshihiro Mochimaru* 
A method for improving numerical solution of transient natural convection heat transfer in 
enclosures is proposed, where temperature, a stream function, and vorticity are 
decomposed into Fourier components of a body-fitted curvilinear coordinate. Using 
addition formulas of trigonometric functions, the equations of motion, energy, and 
continuity can also be separated into Fourier series. This reduces the number of variables by 
one and leads to reduction of the numerical computation time. 

As an example, given is a seven-terms numerical solution for a Grashof number of 19,600 
in case of air in a circular cylinder. 
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Introduction 

Natural convection heat transfer is essentially different from 
forced convection heat transfer in the sense that the flows of 
natural convection are forced neither by an externally applied 
pressure gradient nor by only moving boundaries. 
Mathematically, the flow field of natural convection is coupled 
to the temperature field, the variation of which in space will lead 
to a driving force, a buoyancy force, in connection with 
gravitational acceleration. In a mathematical viewpoint, fields 
of natural convection are classified into two categories: flow 
fields around a body or bodies and flow fields in enclosures. Of 
these, the natural convection flow in an enclosure is an 
essentially recirculating flow. Therefore, for these flows, 
treatment of nonlinear convective terms in the motion equations 
and the energy equation is quite significant. For example, 
natural convection in a rectangular cavity can be treated 
analytically in the conduction limit (at a low Rayleigh number), 
the high Rayleigh number limit (boundary layer regime), the tall 
enclosure limit, or the shallow enclosure limit* and has been 
analyzed numerically by applying finite difference schemes to 
the governing equations. 2-4 This f'mite difference 
approximation in space requires a larger number of grids in 
space as Rayleigh number increases, which requires a larger 
computation time, especially in solving simultaneous equations 
constructed for transient or unsteady natural convection heat 
transfer. 

In this paper, I propose a method for improving numerical 
computation, where one independent variable in space is 
separated even for the nonlinear convective terms, thus the 
number of independent variables is reduced by one, and the 
numerical computation time is greatly reduced. 

Analysis 

Mathematical model 

Transient or unsteady laminar natural convection in a duct of a 
constant cross section placed horizontally is considered. Mean 
temperature difference in fluid is assumed to be small, and slight 
expansion or compression of fluid in a horizontal direction may 
be allowed so that the thermodynamic state is essentially 
isobaric. Under this assumption, the Boussinesq approximation 
for the variation of density holds. All the more, the following are 
assumed in forming the governing equations: 

(I) The fluid is Newtonian. 
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(2) Thermal properties are constant except in the body force. 
(3) The flow and temperature field is essentially two 

dimensional. 
(4) Effects of compressibifity and viscous dissipation are 

negligible. 

Under these assumptions, the governing equations derived from 
the equation of motion, the equation of continuity, and the 
equation of energy become 

p(~ t  + V" V)curl  V =/~A(curl V) +Vp x g 

= #A(curl V ) - p f l V T  x g (1) 

v .  v = 0 (2) 

pcp(~+ V'V)T=kAT (3) 

respectively. Let x, y, z be a right-handed Cartesian coordinate 
system so that the z axis is horizontal and normal to the flow 
plane and the y axis is vertical and upward. Then from 
assumption 3, x and y components of curl V and VT x g vanish 
identically. Let ~ denote the nonzero z component of curl V. 
Then Equation 1 is rewritten 

p(~ + V" V)~ = l.tA~- pfl(V T x g)= 

= uA~ + pg~(VT)x (4) 

where the subscripts z and x mean the z component and the x 
component, respectively. The velocity V and the vorticity ~ are 
coupled with a two-dimensional stream function ~ through 

V = curl(0, 0, ~) (5) 

= -A~b (6) 

Thus the system of equations to be solved consists of Equations 
3-6, supplemented with boundary conditions and initial 
conditions. 

Proposal for the method of separation of one independent 
variable 

Hereafter, the domain of the flow field is assumed to be simply 
connected or doubly connected. Let ~ and ff be suitably selected 
body-fitted spatial coordinates in the xy plane so that without 
loss of generality, the domain is mapped into 0 ~ < 1  and 
- n ~ < ~ n ,  where for a doubly connected region, the 
boundaries correspond to ~ = 0 and ~ = 1, and for a simply 
connected region, the boundary corresponds to ~= 1 only or 
~= 0 and ~= 1. In the case that only ~--1 represents the 
boundary of a simply connected region, ~ = 0 represents a line of 
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finite length inside the boundary or reduces to a single point on 
or inside the boundary; this depends on the coordinate system 
used. The points for which r/= n may correspond to the points 
for which r/= - n. Let ~, ~b, and T be decomposed into Fourier 
series in r/as 

( - -  ~ (~,.(¢, t) cos mr/+ ~ (~=(¢, t) sin mr/ (7) 
m=O m = l  

= ~ ~bo~(~, t) cos mr/+ ~ ~q=(~, t) sin mr/ (8) 
m = 0  m = l  

T =  ~ T~.(¢, t) cos mr/+ ~ T,=(~, t) sin mr/ (9) 
m = 0  r a = l  

The quantities V(, A(, VT, AT, and curl(0, 0, $) are linear with 
respect to (, (, T, T, and ~k, respectively. In a general curvilinear 
coordinate system, the physical components of V(, VT, and 
curl(0, 0, $) are composed of the sum of(  or its partial derivative 
with respect to space, T or its partial derivative, or $ or its 
partial derivative, all multiplied by metric tensors, its partial 
derivatives, or their related functions. These multipliers can be 
expanded into Fourier series in r/ (except singular point(s) if 
any); thus using the addition formulas of trigonometric 
functions, V(, VT, and curl(0, 0, ~k) can be decomposed into 
Fourier series in r/. Likewise A~, At#, and (VT)x [=(tgT/d~) 
(d~/dx)+(dT/ar/)(~/~x)] can be decomposed into Fourier 
series in r/. Since (V. V)(= V" (V(), and since V and V~ can be 
expressed as a Fourier series in r/, (V.V)( can also be 
decomposed into a Fourier series in r/, using the addition 
formulas of trigonometric functions. A similar situation holds 
for (V'V)T. Thus substituting Equations 7, 8, and 9 into 
Equations 3-6 constitutes a system of infinite simultaneous 
partial differential equations for (,~s, (~=s, $~s,  $,sS, T¢ss, and 
Tsms . 

Boundary conditions 

Equation 9 is compatible with the following thermal boundary 
conditions. Along the boundary ~= 1, either temperature or 
heat flux through it is prescribed (the Dirichlet type condition or 
the Neumann type condition). Also along the boundary ~ = 0 if 
it exists, independent of the type of the condition imposed on 

= 1, either the Dirichlet type condition or the Neumann type 
condition is prescribed. 

In the case that ¢ = 0 does not constitute a boundary in the 
physical plane for a simply connected region, the condition 
derived from the fact that the temperature field belongs to a C 2- 
class field there will be supplemented. Given a temperature 
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distribution function T(~j, r/, t) along the boundary ~ = ¢i for the 
Dirichlet type condition, the values of the function T,=(¢l, t) and 
T,=(~t, t) can be determined as the Fourier coefficients of the 
function T(~i, r/, t). Given the normal component of temperature 
gradient n-VT along the boundary for the Neumann type 
condition, 

dT 
a" V T  = ~  (n" V)¢ + ~ (n'V)r/ (10) 

or/ 

where n is an outward unit normal and, using Equation 9, the 
right-hand side of this equation can be estimated. The terms 
(n" V)¢ and (n" V)r/can be expanded into Fourier series in r/; thus 
the right-hand side of Equation 10 can be decomposed into 
Fourier series in ~/, using the addition formulas of 
trigonometric functions. Therefore, by expanding the left-hand 
side of Equation 10 into Fourier series in r/and by equating like 
components of sine and cosine functions, relations at ~ = ~i, 
which are linear in dTc~/d~, aT,~/a~, Tom, and Tsm, can be 
obtained. 

As for the boundary conditions for velocity, no-slip 
conditions at the boundary apply. That is, along the boundaries 

~k = constant (11) 

n'V~b=0 (12) 

Equations 11 and 12 can be decomposed into Fourier series in r/ 
along the boundary ¢=constant. Moreover, in the case that 
~ = 0  does not constitute a physical boundary for a simply 
connected region, the condition that the stream function ~, and 
the vorticity ( are C2-class functions there will be supplemented. 

Numerical solution procedure 

Here it is assumed initial conditions for ~, ~k, and T can be 
expanded into the forms of Equations 7-9. In the case that 
Equations 7-9 converge uniformly or asymptotically, 
truncation of terms possessing higher Fourier components in 
Equations 7-9 and keeping only the corresponding first few 
Fourier components in Equations 3-6 gives rise to a system of 
simultaneous nonlinear partial differential equations for a finite 
number of unknowns. To get a solution of this system for 
transient or unsteady natural convection heat transfer, it is 
convenient to introduce a forward difference formula for partial 
time derivatives and possibly any type of finite difference 
formulas for spatial derivatives. Implicit schemes are suggested 
for specifying the time when each term except local acceleration 
terms possessing the operator d/dt is estimated, that is, in 
equations corresponding to the cos mr/ or sin mr/component, 

Notation 
a Radius at a circular cross section 
cp Specific heat at constant pressure 
g Gravitational acceleration 
g Gravitational acceleration vector 
Gr Grashof number defined in Eq. (14) 
h Distance between neighboring two grid points 
k Thermal conductivity 
n Outward unit normal 
Pr Prandtl number 
r Radial coordinate in a cylindrical polar coordinate 

system 
T Temperature 
t Time 
T c Temperature at the origin 
T i Initial temperature 
7", Wall temperature 
Uo Reference velocity 
V Velocity vector 

V¢ y component of velocity at the origin 
x Coordinate in a Cartesian coordinate system 
y Coordinate in a Cartesian coordinate system 
z Coordinate in a Cartesian coordinate system 
fl Coefficient of thermal expansion 
fit Time increment 

Vorticity 
r/ Coordinate in a body-fitted curvilinear coordinate 

system 
0 Tangential coordinate in a cylindrical polar 

coordinate system 
/~ Viscosity of fluid 
v Kinematic viscosity of fluid 

Coordinate in a body-fitted curvilinear coordinate 
system 

p Density of fluid 
~, Stream function 
A Laplacian operator 
V Gradient operator 
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local acceleration terms &PlOt, where ~b denotes ~ , ,  ~ . ,  T¢=, or 
T,m, are evaluated as 

0 1 
q~(~, t )~ ~ {~b(¢, t + 6 0 -  4~(~, t)} (13) 

where t is the current time. Other terms that are linear functions 
of unknowns should be evaluated at time t + 6t if and only if the 
second suffices of the unknowns are the same as m, whereas all 
other remaining terms including nonlinear terms are to be evalu- 
ated at time t. The same applies to the boundary conditions. 
These processes constitute a system of linear simultaneous equa- 
tions for unknowns over the space ~ at time t + 6t. All the more, 
the resultant linear equations for different periods i n t/become 
independent of one another and can be solved with consuming 
shorter computation time. Thus the system of equations can be 
solved in advancing time step by step with initial conditions. 

An e x a m p l e  of  the  analysis 

Flow configuration 

As an example, the current proposed method is appfied to a 
transient natural convection heat transfer problem, that is, 
Newtonian fluid enclosed in a circular cylinder of radius a 
placed horizontally is assumed to be initially at rest (t < 0) under 
isothermal conditions, and a uniform step change of wall 
temperature takes place at t = 0, after which the temperature at 
the wall will be held constant. For convenience, initial increase 
of wall temperature is assumed. 

Formulation of the problem 

Let Gr denote a Grashof number, which is defined as 

Gr = ~ (T w - Ti) (14) 

l 

V 

where T i is the initial temperature of the fluid, and T. is the 
constant temperature of the wall for t~>0. Hereafter for 
simplicity, coordinates, velocity, time, a stream function, and 
vorticity are nondimensionalized with respect to a, Uo, a/Uo, 
aUo. and Uo/a, respectively, where Uo is a reference velocity and 
is defined as 

Uo =-v Gr0. s 
fl 

Temperature is nondimensionalized as 

(rw- r) 
(Tw - T0 
and hereafter T stands for this nondimensionalized 
temperature. To describe the heat and fluid flow, a cylindrical 
polar coordinate system (r, 0, z) is used as in usual orientation, 
the origin being located at the center of the circular cross 
section. Then, Equations 3, 4, and 6 become 

( 0  lOq/ 0 lat, O 0 )  1 
-~q - T = - - A T  (15) 

r O0 0r r & P r ' G r  °'5 

( 0  10~ 0 l & P ~ 0 )  
r 00 Or r Or 

1 ( oO_ ,16, 
= G r 0 . s A ~ -  cos Or r 

~= - A O  (17) 

respectively, where A is a two-dimensional Laplacian operator 
defined as 

0 2 I ~ 1 0 2 
A=~-r2 + r  ~ r  ff r 2 005 (18) 

The coordinates r and 0 correspond to ~ and ~/, respectively, in 
the general notation used previously. Initial conditions at t = 0 
are  

T = 0  for I r [< l  
~ - - 0  for Irl~<l (19) 
Boundary conditions at t/> 0 are 

T=O for r= l 

g/= 0 for r = 1 (20) 

0~b=0 for r=l  
& 

Under these initial and boundary conditions, Equations 15-17 
have the following formal solutions: 

T= ~ T2=(r, t) cos 2m0 
m = O  

+ ~ T2~+l(r,t)sin(2m+l)O (21) 
ra=O 

~= ~ ~2m+1(r,t)cos(2m+ l) 0 
ra=O 

+ ~ ~2m(r, t) sin 2m0 (22) 
m=I 

~= ~ ~2m+l(r,t)cos(2m+l) 0 
m=O 

+ ~ ~2~(r, t) sin 2m0 (23) 
m=l 

Substituting Equations 21-23 into Equations 15-17 and 
decomposing into Fourier components produces a system of 
nonlinear partial differential equations for T=s, •,.s, and ~=s; the 
cos(00) component of Equation 15 is given as an example: 

0 0 ® 2 m + l .  0 ~ m 

1 [ 0  2 1 d \T ,  
= ~ ~ r 2  + ; ~ r )  o (24) 

The boundary conditions (Equation 20) at r = 1 for t~> 0 become 

Tin=0 (m~>0) 
~k==0 (m~> 1) (25) 

0 
~rr ~,,.=0 (m>~l) (26) 

The initial conditions (Equation 19) at t = 0 become 

7"o=1 for Irl<l 

T .=0  for Irl.< 1, (m~> 1) (27) 

~ . = ~ . = 0 f o r  Iris<l, (m~>l) 

Supplementary conditions at r = 0 derived from Equations 15- 
17 are 

0 
~rTo =0 

Tin=0 (m~> 1) 
~ m = ~ . = 0  (m~> 1) (28) 

Under the conditions of Equations 25-28, the functions T.,, qJ.,, 
and ~., possess the following nature: 

T= ~ 0(Gr ~ ) (29) 

~ . ~ O ( O e  " - ° s )  (30) 

~=,.. 0(Gr ~-° 's  ) (31) 
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Figure 1 Streamlines in the right half section for transient natural 
convection at t/Gr°.S=O.0508 (Gr = 19,600, Pr= 0.72). The pattern in 
the left half section isthe reflection of that shown wi th respect to the 
y axis, although the stream functions are opposite in sign 

as Gr tends to zero while t/Gr °'5 remains f'mite. Thus using 
equally spaced grids in the r direction, the system of equations 
for T=s, ~O.,s, and ;.,s can be solved numerically according to the 
solution procedure previously mentioned, where Equation 26 is 
equivalent with good accuracy to 

~.,(1 - h, t ) ~  - h2-i ~, . (1 - h, t) (32) 

and h is the distance between two adjacent grid points. 

Numer ica l  results 

In the following numerical example, only the first seven 
functions in Equations 21-23 are retained, and higher 
components are neglected; that is, only the functions To ~ 7"6, 
~01~07, and ; I ~ G  are adopted, and only the equation 
corresponding to the Fourier components of these functions are 
used. 

Figures I and 2 show patterns of streamlines and isotherms in 
the right half section for Pr = 0.72 (Air), Gr = 19,600, t/Gr °'s = 
0.0508 (h = 0.04). Figure 3 shows the variation of the temperature 
at the origin, To, with time for Pr=0.72, G r =  19,600. Figure 4 
shows the downward flow velocity at the origin, - Vc, with time 
for Pr=0.72, G r =  19,600. 

D i s c u s s i o n  

L o w  Grashof  numbe r  l im i t  

In the low Grashof number limit, both in Equations 3 and 4, 
nonlinear convective acceleration terms can be neglected to give 

= 2 T = ~E lffmj-~([3.) ao~,, r ) exp( - ,B2t/(Pr • Gr °5)) (33) 

q,= 2 Pr" Gr °'s cos 0 r ~ 1 
1 - Pr L~_ 1 ~ exp(-/ l~t/(Pr • Gr°'s)) 

~" . . . .  J , ~ , . ) J o @ J P r  °'5) 
× lJt(Pmr)+ ~ r 

2 Pr°'sJl~m) jxq3mr/prO.5)~ 
l / s J 2 ~ / P r  °'s) ) 

+.=1~ Am{Jl(ymr)-Jl(ym)r}exp(-y2mt/Gr°'5)] (34) 

2 oo 1 ~Y.Jo('i.,) Zl,( ' i .,) ] 
a._= 2- ~ ~ ~ ~-a-~.~,~ (35) 

J,(Ym).=,/~. [ Y.,-/~. ~,.,-/~./PrJ 

y, 

T-0.2 

OF / I I I I x  

Figure 2 Isobars in the right half section for transient natural 
convection at t /Gr °s  = 0.0508 (Gr = 19,600, Pr = 0.72). The pattern in 
the left half section is the reflection of that shown wi th respect to the 
y axis 

1.0 

0 . 5 -  

I I 
0 0.05 t 0.10 0.15 

GrO.~ 
Figure 3 Thevar ia t ionof thetemperatureat theor ig in ,  Tc, w i th t ime 
(Gr = 19,600, Pr=0.72) 
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3xl 0 -3 

2xl (~3 

, )© 
-3 

10 

I I 

0 0.05 t 0.10 0.15 
Gr o.s 

Figure 4 The variation of the downward flow velocity at the origin, 
- Vc, with time (Gr=19,600, Pr=0.72) 

where Jo, J1, and J2 are the Bessel functions of orders 0,1, and 2, 
respectively; ft, and T~, are the positive ruth zeros of Jo(x) and 
J2(x), respc~ively.~It'is ~lso'assurned,' Pr #1. and Pr,P fl~/~,~ -for 
any integers m and n, that is, Jz (~/Pr° 's)  # 0. Equations 33 and 
34 are good approximations to the numerical solution for a set 
of Equations 15-17 up to a Gxashof number of approximately 
100 (Pr = 0.72). 

Start-up of heat and fluid f low 

Since all the boundaries are stationary, the vorticity is 
continuous at t=O with respect to time. Therefore, even if the 
initial temperature gradient at the wall is mathematically 

infmite, the current system of equations can be solved stably by 
the proposed implicit schemes, using finite difference methods 
for spatial derivatives, although the numerical solutions 
obtained in this way possess a slight error only for a short while 
after the start-up of flow. For precisely estimating the start-up of 
flow in a short interval, Equations 33 and 34 can be used. 

High Grashof number f low 

Use of the first seven Fourier components produces good 
numerical solutions at least up to a Grashof number of 
approximately 40,000 in the sense that terms of higher Fourier 
components are almost small compared with those of the lower 
components. If the Grashof number gets greater than 10 s, more 
components will become necessary. 

C o n c l u s i o n  

A method for improving numerical solution of transient or 
unsteady natural convection heat transfer enclosed in duct 
wall(s) is proposed, where use is made of Fourier decomposition 
for temperature, the stream function, and vorticity. As an 
example, given is a seven-terms numerical solution for a 
Grashof number of 19 600 in case of air in a circular cyhnder 
facing to a step change of wall temperature. 
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